편집
781
번
45번째 줄: | 45번째 줄: | ||
그런데 만약 McX가 의미와 명명 사이의 구분법을 수용하면서도 다음과 같이 반문한다면? 그래도 '~이 붉다(R)', '~이 페가수스이다(P)'와 같은 술어가 속성의 이름이 아니라 하더라도, 그것이 '''의미'''를 갖는다는 것을 인정하는 사람이라면, 결국 의미가 있다는 것으로부터 보편자의 존재를 받아들여야 할 거라고. 이에 대한 콰인의 답변은 '~이 의미있다/없다'의 문제가 의미라는 어떤 추상적 존재에 의존하지 않는 궁극적/환원불가능한 문제라는 것이다. | 그런데 만약 McX가 의미와 명명 사이의 구분법을 수용하면서도 다음과 같이 반문한다면? 그래도 '~이 붉다(R)', '~이 페가수스이다(P)'와 같은 술어가 속성의 이름이 아니라 하더라도, 그것이 '''의미'''를 갖는다는 것을 인정하는 사람이라면, 결국 의미가 있다는 것으로부터 보편자의 존재를 받아들여야 할 거라고. 이에 대한 콰인의 답변은 '~이 의미있다/없다'의 문제가 의미라는 어떤 추상적 존재에 의존하지 않는 궁극적/환원불가능한 문제라는 것이다. | ||
== 존재론적 | == 존재론적 구속의 유일한 기준과 수학의 존재론 == | ||
지금까지 보인 바에 따르면, 이름은 제거될 수 있기에 존재론적 구속의 기준이 되지 않는다. 어떤 이름을 사용하고 사용하지 않고는 그 문장을 사용하는 사람의 존재론적 구속에 중립적이다. 반면 "There is something which ..."와 같이 속박 변항의 사용은 존재론적 개입을 명백하게 드러낼 수 있고, 또한 유일하게 드러낸다. "있다는 것은, 결국, 변항의 값이 있다는 것이다." 예컨대 "Some dogs are white"라는 문장을 "There is something which is a white dog"로 변환할 수 있음을 보이는 순간, 이 문장이 참이 되기 위해 필요한 것은 white dog에 해당하는 어떤 것이 있어야 한다는 것일 뿐, whiteness나 doghood가 있어야 하는 것은 아님을 보일 수 있다. | |||
수학의 존재론적 논쟁들도 이런 방식으로 명료해질 수 있다. 어떤 이론이나 논의 형식은 어떤 존재론에 얽매여 있는가? 한 이론은 그 이론 내 진술들이 참이 되기 위해 그 이론의 속박 변항이 지칭할 수 있어야만 하는 존재자에 그리고 그 존재자에만 얽매인다. 즉중세의 수학의 기초에 대한 현대의 관점들 사이의 근본적인 불일치는 아주 명백하게 속박 변항이 지칭할 수 있는 존재자의 범위에 대한 불일치로 귀결된다. | |||
보편자에 대한 중세의 세 관점 실재론, 개념론, 유명론은 20세기 수학철학의 세 관점 논리주의, 직관주의, 형식주의로 재탄생했다. 보편자의 존재를 주장하던 실재론을 계승한 논리주의는 추상적 존재들을 지칭하도록 사용되는 속박 변항을 허용한다. 보편자가 마음의 구성물로서 존재함을 주장하는 개념론을 계승한 직관주의는 추상적 존재들이 미리 구체화된(specified) 구성요소들로부터 개별적으로 구성될 수 있는 경우에 한해서만 그런 존재들을 지칭하는 데 속박 변항을 사용하는 것을 허용한다(논리주의에 따르면 집합은 발견된 것인 반면, 직관주의에 따르면 집합은 발명된 것 / 논리주의자는 무한의 여러 등급을 구분할 수 있는 반면, 직관주의자는 무한의 최저 등급만 얻을 수 있고 그에 따라 실수 법칙도 포기해야). 형식주의는 보편자 부정하지만, 추상적 존재를 마음의 구성물로서도 전혀 허용하지 않으려 할 수 있다. 그들에게 고전 수학은 의미 없는 기호들(notations)을 이용한 놀이이다. 수학적 용어와 문장들은 유용할 수 있으나, 그 유용성은 어떠한 문자적 의미에서도 유의미함을 함축하지 않는다. 수학자들 사이의 합의는 의미 없이도 가능한데, 구문론적 규칙만으로도 가능하기 때문이다. | |||