편집
784
번
(→문제 1) |
잔글 (→문제 1) |
||
38번째 줄: | 38번째 줄: | ||
'''심화 이해 1 : 시간 지연''' | '''심화 이해 1 : 시간 지연''' | ||
[[그림:시간 지연 공식의 유도.png|thumb|을에게 자신의 시계의 1똑딱(<math>T</math>)은 위아래를 왕복하는 시간인 반면, 을이 보기에 갑의 시계는 <math>v</math>의 속도로 오른쪽으로 운동 중이며, 따라서 갑의 시계의 1똑딱(<math>t</math>)은 빛이 <math>c</math>의 속도로 비스듬한 경로를 따라 왕복하는 시간이 된다.]] | [[그림:시간 지연 공식의 유도.png|thumb|을에게 자신의 시계의 1똑딱(<math>T</math>)은 위아래를 왕복하는 시간인 반면, 을이 보기에 갑의 시계는 <math>v</math>의 속도로 오른쪽으로 운동 중이며, 따라서 갑의 시계의 1똑딱(<math>t</math>)은 빛이 <math>c</math>의 속도로 비스듬한 경로를 따라 왕복하는 시간이 된다.]] | ||
관찰자 을에게 자신의 시계의 1똑딱(T)은 빛이 <math>c</math>의 속도로 <math>L | 관찰자 을에게 자신의 시계의 1똑딱(T)은 빛이 <math>c</math>의 속도로 총 <math>L</math>의 거리를 움직이는 데 걸리는 시간으로, 아래와 같이 결정된다. | ||
:<math>T = \frac{L}{c}</math> | :<math>T = \frac{L}{c}</math> | ||
반면 관찰자 을에게, 갑의 시계는 <math>v</math>의 속도로 오른쪽으로 운동 중이며, 따라서 갑의 시계의 1똑딱(<math>t</math>)은 빛이 <math>c</math>의 속도로 비스듬한 경로를 따라 왕복하는 시간이 되며, 시계<sub>갑</sub>의 1똑딱 <math>t</math>, 관찰자 을에 대한 시계의 속도 <math>v</math>, 빛의 속도 <math>c</math> 사이에는 아래와 같은 간단한 관계가 성립한다. | 반면 관찰자 을에게, 갑의 시계는 <math>v</math>의 속도로 오른쪽으로 운동 중이며, 따라서 갑의 시계의 1똑딱(<math>t</math>)은 빛이 <math>c</math>의 속도로 비스듬한 경로를 따라 왕복하는 시간이 되며, 시계<sub>갑</sub>의 1똑딱 <math>t</math>, 관찰자 을에 대한 시계의 속도 <math>v</math>, 빛의 속도 <math>c</math> 사이에는 아래와 같은 간단한 관계가 성립한다. | ||
63번째 줄: | 63번째 줄: | ||
:<math>2\frac{1}{\sqrt{1 - (v/c)^2}} T \neq 2 \frac{1}{1 - (v/c)^2} T</math> | :<math>2\frac{1}{\sqrt{1 - (v/c)^2}} T \neq 2 \frac{1}{1 - (v/c)^2} T</math> | ||
[[그림:길이 수축 공식의 유도.png|thumb|을의 입장에서 버스의 높이는 <math>L</math>로 그대로이지만, 버스가 움직이는 방향의 길이는 <math>2l</math>로 변화한다고 가정하자. 버스 안에 있는 갑의 입장에서 D에서 반사되어 돌아오는 빛과 B에서 반사되어 돌아오는 빛이 동시에 만난다면, 버스 밖의 관찰자 을의 입장에서도 두 빛으 동시에 만나야 한다. 이를 기준 삼아, 버스의 길이 변화를 유도할 수 있다.]] | [[그림:길이 수축 공식의 유도.png|thumb|을의 입장에서 버스의 높이는 <math>L</math>로 그대로이지만, 버스가 움직이는 방향의 길이는 <math>2l</math>로 변화한다고 가정하자. 버스 안에 있는 갑의 입장에서 D에서 반사되어 돌아오는 빛과 B에서 반사되어 돌아오는 빛이 동시에 만난다면, 버스 밖의 관찰자 을의 입장에서도 두 빛으 동시에 만나야 한다. 이를 기준 삼아, 버스의 길이 변화를 유도할 수 있다.]] | ||
아인슈타인의 해법은 관찰자 을의 입장에서 움직이는 버스의 길이가 정지해 있을 때의 길이와 달라진다는 것이다. <math>v</math>의 속도로 움직이는 버스의 길이가 <math>2L</math> 대신 <math>2l</math> | 아인슈타인의 해법은 관찰자 을의 입장에서 움직이는 버스의 길이가 정지해 있을 때의 길이와 달라진다는 것이다. <math>v</math>의 속도로 움직이는 버스의 길이가 <math>2L</math> 대신 <math>2l</math>이 된다고 가정하면, C에서 출발한 빛이 B에서 반사되어 돌아오는 시간은 아래와 같이 계산된다. | ||
:C에서 D까지의 경로 : <math>ct_1 = l+vt_1</math>. 따라서 <math>t_1 = l/(c-v)</math> | :C에서 D까지의 경로 : <math>ct_1 = l+vt_1</math>. 따라서 <math>t_1 = l/(c-v)</math> | ||
:D에서 C까지의 경로 : <math>ct_2 = l-vt_2</math>. 따라서 <math>t_2 = l/(c+v)</math> | :D에서 C까지의 경로 : <math>ct_2 = l-vt_2</math>. 따라서 <math>t_2 = l/(c+v)</math> | ||
:전체 시간 <math>t_1 + t_2 = l/(c-v) + l/(c+v)=2\frac{1}{1-(v/c)^2}\frac{l}{c}</math> | :전체 시간 <math>t_1 + t_2 = l/(c-v) + l/(c+v)=2\frac{1}{1-(v/c)^2}\frac{l}{c}</math> | ||
이제 이 시간은 빛이 D를 거쳐 돌아오는 시간 <math>2\frac{1}{\sqrt{1 - (v/c)^2}} T</math> | 이제 이 시간은 빛이 D를 거쳐 돌아오는 시간 <math>2\frac{1}{\sqrt{1 - (v/c)^2}} T</math>와 같아야 한다. 즉, | ||
:<math>\begin{align} | :<math>\begin{align} | ||
2\frac{1}{1-(v/c)^2}\frac{l}{c} &= 2\frac{1}{\sqrt{1 - (v/c)^2}} T \\ | 2\frac{1}{1-(v/c)^2}\frac{l}{c} &= 2\frac{1}{\sqrt{1 - (v/c)^2}} T \\ |