"케플러의 법칙"의 두 판 사이의 차이

16 바이트 제거됨 ,  2025년 10월 31일 (금)
편집 요약 없음
태그: 모바일 웹 편집 모바일 편집 되돌려진 기여
19번째 줄: 19번째 줄:
== 뉴턴의 증명 ==
== 뉴턴의 증명 ==


뉴턴은 원래 케플러의 제3법칙(조화의 법칙)과 행성의 원운동을 가정할 경우 태양의 인력이 거리의 제곱에 반비례할 것이라는 간단한 증명을 한 바 있다. 나중에 핼리가 방문하여 "거리의 제곱에 반비례하는 인력이 작용할 경우 물체의 궤도가 어떻게 되느냐?"는 질문을 받은 뉴턴은 완전한 증명에 착수한다. 간단히 요약하자면, 뉴턴은 구심력을 가정하여 케플러의 제2법칙(면적 속도 일정의 법칙)을 유도하고, 구심력에 의한 물체의 궤도가 타원일 경우(케플러의 제2법칙) 그 구심력의 크기가 거리의 제곱에 반비례함을 증명한다. 단 이러한 증명들은 기본적으로는 뉴턴의 운동 법칙 <math>\mathbf F = m \mathbf a</math>를 전제하고 있다.  
뉴턴은 원래 케플러의 제3법칙(조화의 법칙)과 행성의 원운동을 가정할 경우 태양의 인력이 거리의 제곱에 반비례할 것이라는 간단한 증명을 한 바 있다. 나중에 핼리가 방문하여 "거리의 제곱에 반비례하는 인력이 작용할 경우 물체의 궤도가 어떻게 되느냐?"는 질문을 받은 뉴턴은 완전한 증명에 착수한다. 간단히 요약하자면, 뉴턴은 구심력을 가정하여 케플러의 제2법칙(면적 속도 일정의 법칙)을 유도하고, 구심력에 의한 물체의 궤도가 타원일 경우(케플러의 제2법칙) 그 구심력의 크기가 거리의 제곱에 반비례함을 증명한다. 단 이러한 증명들은 기본적으로는 뉴턴의 운동 법칙 <math>F = m a</math>를 전제하고 있다.  


이 섹션의 증명은 {{책|프린키피아}}에서 사용된 뉴턴의 기하학적 증명 방식을 거의 그대로 따르고 있지만, 독자들의 이해를 위해 표현과 순서를 조정하였으며, 그 과정에서 뉴턴은 사용하지 않은
이 섹션의 증명은 {{책|프린키피아}}에서 사용된 뉴턴의 기하학적 증명 방식을 거의 그대로 따르고 있지만, 독자들의 이해를 위해 표현과 순서를 조정하였으며, 그 과정에서 뉴턴은 사용하지 않은