On Denoting

PhiLoSci Wiki
둘러보기로 가기 검색하러 가기
  • Bertrand Russell, "On Denoting (지시함에 관하여)" (1905)

의미가 두 차원, 즉 뜻과 지시체를 갖는다는 프레게와 같은 생각은 잘못되었다. 어떤 말의 의미는 곧 그것의 지시체여야 한다. 즉 뜻은 있으면서 지시체가 없는 한정기술구나 이름은 진정한 이름이 아니다. 지시체가 있어 보이는 지시구도 사실은 지시체를 가진 이름이 아니다.

지시구(denoting phrase)는 그 자체로는 어떤 의미(뜻이나 지시체 모두)도 갖지 않는다. 다만 지시구가 포함된 명제만이 의미를 갖는다. 명제 속의 지시구는 명제 함수로 재기술되어 분석되어야 한다. 이를 통해 어떤 의미를 가진 것처럼 보였던 지시구는 명제 속에서 제거된다.

이로써 지시구나 이름이 있으면 그것이 지시하는 대상(존재)이 있는 것 같은 착각(혼란)을 제거할 수 있게 되었다. 또한 지시대상이 없는 구가 포함된 문장의 참/거짓을 논할 수 있게 되었다. 비존재 문장에 대한 엄격한 분석이 가능해졌다. 마지막으로 동일성 문장에 대한 참된 가치를 설명할 수 있게 되었다.

러셀의 지시 이론

C(x)를 명제 함수, x를 변항이라고 하면, everything, nothing, something은 다음과 같이 분석되어야 한다.

  • C(everything) : 'C(x)는 항상 참이다.'
    • C(all men) : e.g., 'all men are mortal.' -> '"If x is human, x is mortal" is always true.'
  • C(nothing) : '"C(x)는 거짓이다"는 항상 참이다.'
  • C(something) : '"C(x)는 거짓이다"는 항상 참이라는 것은 거짓이다'
    • C(a man) : 'I met a man.' -> '"I met x & x is human"is not always false.'

즉 everything, nothing, something은 그 자체로는 의미가 없다. 의미는 그것이 등장하는 명제에만 주어진다. 지시구는 그 자체로는 어떤 의미도 갖지 않으며, 다만 지시구를 포함한 명제만이 의미를 갖는다.

정관사(the)를 포함하는 지시구의 경우

  • '찰스 2세의 아버지(the father of Charles II)는 처형되었다.' -> 'x가 찰스 2세를 낳았고(begat), x는 처형되었으며, "만약 y가 찰스 2세를 낳았다면 y는 x와 동일하다"는 것이 y에 대해서 항상 참인 것은 x에 대해서 항상 거짓인 것은 아니다.'

정관사(the)를 포함하는 지시구는 유일성을 나타내는 것으로 분석한다. 이러한 분석을 통해 우리는 찰스 2세의 아버지가 등장하는 모든 명제는, 찰스 2세가 하나의 오직 하나의 아버지를 가진다는 것을 함축한다는 것이 드러난다. 따라서 만약 그런 함축이 위배된다면 그 지시구가 등장하는 모든 명제는 거짓이 된다. 이와 같은 이유로 "프랑스의 현재 왕"을 포함하는 모든 명제는 거짓이다.

소결

지시구는 그 자체로는 어떤 의미도 갖지 않으며, 다만 지시구를 포함한 명제만이 의미를 갖는다. 지시구가 나타나는 모든 명제는 지시구가 나타나지 않는 형태로 환원할 수 있다. 이로써 지시구를 명제의 고유 구성 요소로 받아들일 때 발생하는 여러가지 문제들이 해소될 수 있다. (여러 문제의 해결 방식은 뒤에서 제시될 것임)

마이농과 프레게 이론에 대한 비판적 검토

마이농의 이론

마이농은 문법적으로 올바른 지시구는 진정한 대상을 표상한다고 보았다. 그러나 이는 모순률을 위배해야 하는 문제가 생긴다.(e.g., "둥근 사각형은 둥글다/네모나다.")

프레게의 이론

프레게에 따르면, 지시구는 의미와 외연을 가진다. 지시구는 의미를 표현하고 외연을 지시한다. 이 이론의 강점은 동일성에 대한 언명이 왜 (인식적으로) 가치있는지를 설명한다는 것이다. '스콧은 웨이벌리의 저자이다'라는 명제는 '스콧'과 '웨이벌리의 저자'가 같은 외연을 가지지만 다른 의미를 가지므로 둘의 동일성을 주장하는 문장은 인식적으로 가치가 있으며, '스콧은 스콧이다'와는 구분되게 된다.

프레게의 이론에 따르면, '현재 프랑스의 왕은 대머리이다'라는 명제는 무의미한(nonsense) 명제가 된다. 그러나 러셀이 보기에 이 명제는 명백히 거짓이다.

소결

이러한 문제를 해결하기 위해서는 외연이 없는 것처럼 보이는 경우에도 외연을 상정하거나, 아니면 지시구를 포함하는 명제가 그 지시구의 외연에 대한 것이라는 견해를 버려야 한다. 마이농은 존립하지 않는(subsist) 대상을 인정함으로써 전자의 방법을 택했으나, 이 방법은 모순률을 위배하는 결과를 낳기 때문에 가능하면 피해야 할 것이다. 프레게 또한 관습적 지시를 인정함으로써 전자의 방법을 취했다. 이 방법은 비록 논리적인 문제는 없으나 너무나 인위적이며, 문제에 대한 정확한 분석으로 보기 어렵다.

지시에 관한 이론이 풀어야 할 세 가지 퍼즐과 해법

  1. "조지 4세는 스콧이 웨이벌리의 저자인지 알기 원한다" vs. "조지 4세는 스콧이 스콧인지 알기 원한다"
    • a와 b가 동일하면, a에 대해 참인 것은 b에 대해서도 참일 것이고, 따라서 a가 등장하는 어떤 명제에서도 그 진리값의 변화 없이 a를 b로 대체할 수 있어야 한다. 그렇다면 왼쪽의 명제가 참이라면, 오른쪽의 명제도 참이라고 말해야 할 것이지만, 이는 우리의 직관에 위배된다. (조지 4세가 논리적 동일률에 관심이 있었다고는 보기 어렵지 않은가?!)
  2. '프랑스의 현재 왕은 대머리이다' vs. '프랑스의 현재 왕은 대머리가 아니다'
    • 배중률에 의해서, '프랑스의 현재 왕은 대머리이다'와 '프랑스의 현재 왕은 대머리가 아니다' 중 하나는 참이어야 한다. 프레게에 따르면 둘 모두 무의미한 명제일 것이다. 러셀에게 전자가 거짓이므로 배중률에 의해 후자는 참이어야 할 것이다. 그러나 직관에 의하면 둘 모두 거짓이어야 맞는 듯 보인다. 이는 왜인가?
  3. 'A는 B와 다르지 않다' -> 'A와 B의 차이는 존재하지 않는다'?
    • 'A는 B와 다르지 않다'를 'A와 B의 차이는 존재하지 않는다'로 해석한다면, 존재하지 않는 것이 주어가 된다. 어떻게 존재하지 않는 것, 즉 비존재자가 명제의 주어가 될 수 있는가? 이것이 문제라면 어떤 것의 존재를 부정하는 것은 항상 모순으로 보인다. 즉 A와 B가 다르지 않을 경우, A와 B의 다른점은 있다라고도 할 수 없고 없다라고도 할 수 없게 된다.

해결의 원칙

  • 지시구는 문장의 일부이지, 그 자체로 의미를 갖는 것이 아니다. 지시구는 명제 함수로 분석되어야 한다.
  • 지시구의 일차적 등장(primary occurence)과 이차적 등장을 구분해야 한다.
  • 존재/비존재 문장은 "~~인 x가 존재한다는 것은 참이다/거짓이다" 형태로 분석되어야 한다.

퍼즐1 : "조지 4세는 스콧이 웨이벌리의 저자인지 알기 원한다" vs. "조지 4세는 스콧이 스콧인지 알기 원한다"

  • '스콧은 웨이벌리의 저자이다' -> '한 & 오직 하나의 존재자가 웨이벌리를 썼고, 스콧은 그 한 존재자와 동일하다'
  • '조지 4세는 스콧이 웨이벌리의 저자인지 알기 원한다.' -> '조지 4세는, 하나의 오직 하나의 사람이 웨이벌리를 썼으며 스콧이 그 사람과 동일한지를 알기를 원한다'

문제가 되는 문장을 분석하면 오른쪽 명제와 같은 문장이 된다. 분석된 문장에서는 '웨이벌리의 저자'라는 지시구 자체가 등장하지 않게 된다. 이로써 '웨이벌리의 저자'를 '스콧'으로 대체함으로써 발생하는 문제는 사전에 차단된다.

퍼즐2 : '프랑스의 현재 왕은 대머리이다' vs. '프랑스의 현재 왕은 대머리가 아니다'

'프랑스의 현재 왕은 대머리가 아니다'라는 명제는, "프랑스의 현재 왕"이 일차적으로 등장하느냐 이차적으로 등장하느냐에 따라 다음과 같이 두 가지 방식으로 분석될 수 있다.

  1. 일차적 등장 : 현재 프랑스의 왕이면서 대머리가 아닌 어떤 존재자가 있다. [(∃)~( )] -> 거짓
  2. 이차적 등장 : 현재 프랑스의 왕이면서 대머리인 어떤 존재가 있다는 것은 거짓이다. [~(∃)( )] -> 참

참이 되는 후자의 경우(이차적 등장)가 거짓인 문장 '프랑스의 현재 왕은 대머리이다'의 부정으로 해석될 수 있으며, 이로써 배중률이 구제될 수 있다. 그러나 보통 우리의 직관은 전자의 경우(일차적 등장)이다. 즉 배중률과 직관을 모두 구제할 수 있다.

'프랑스의 현재 왕'이 일차적으로 등장하는 모든 명제는 거짓이지만, '프랑스의 현재 왕'이 이차적으로 등장하는 명제는 참일 수 있다. 이로써 모든 비존재를 만족스럽게 다룰 수 있게 되었다. '아폴로', '햄릿', '둥근 사각형' 등은 아무것도 지시하지 않는 지시구이다. 이들이 일차적으로 등장할 때 그 명제는 항상 거짓이며, 이들이 이차적으로 등장할 때 그 명제는 참일 수 있다.

퍼즐3 : 'A는 B와 다르지 않다' -> 'A와 B의 차이는 존재하지 않는다'?

  • 'A와 B의 차이는 존재하지 않는다' -> '하나의 오직 하나의 존재자 x가 존재하며, x는 A와 B의 차이라는 것은 거짓이다'

지시구 이론의 함축

  1. 동일성의 유용성 설명
  2. 우리가 이해할 수 있는 모든 명제의 구성요소들은 우리가 직접 대면할 수 있는 실제 존재들

보론: 고유명사에 대해 (러셀의 다른 논문에서)

러셀은 고유명사를 두 가지로 분류했다.

일상적인 고유명사는 한정 기술구로 대체될 수 있다고 보았다. "로물루스는 존재하지 않는다"와 같은 문장에서, "로물루스"는 그냥 이름이 아니라 이러저러한 일을 한 사람 따위의 내용들이 축약된 것으로 분석되어야 한다. 그래서 그 문장은 "...인 사람이고, 로물루스'라고 불린, 그런 x가 존재한다는 것은 거짓이다"와 같은 형태로 분석되어야 한다. (그래야 존재/비존재 문장이 의미가 형태로 분석될 수 있게 되기 때문)

반면 대체될 수 없는 고유명사는 논리적 고유명사라 불렀다. 이는 순수 지시사일 뿐 어떤 내포도 가지지 않는다. 그것을 가리킬 뿐 기술하지 않는다.(예: '이것', '저것')

더 읽을거리